

A Sediment Study of Little Leading Creek

Guy Riefler¹, Ben Stuart¹, Tiao Chang¹, Barbara Flowers², Jennifer Chapman-Kleski³, Yanhui Fang¹

¹Department of Civil Engineering ²Ohio Dept of Natural Resources ³Environmental Studies

Little Leading Creek

Appalachian Plateau Region of Southeast Ohio

5th Order Perennial Tributary to Leading Creek a Tributary of the Ohio River

Watershed Size	25.6 Mi ²
Main Stem Length	9.1 Miles

Impairment of Creek

- fails to meet warm water habitat criteria because of excessive sand
- filled pools results in poor breeding and few hiding places
- fish assemblages diverse but of very small size

history of frequent flooding

Sand

- deeply entrenched channels
- highly erodible banks
- poor habitat in channel for fish

And More Sand

- deep sand deposits in channel
- during low flow, surface water drains through the sand deposits

Mining History

- majority of the active surface mining took place between 1950 and 1964
- reclaimed AML = 1.1 Mi²
- unreclaimed AML = 1.2 Mi²
- 9% of watershed
- over \$4 million spent on AML reclamation in Little Leading Creek watershed from 1979-1990

Mining Erosion

- potential erosion rate from strip mining = 200+ ton/acre (USDA, 1985)
- translates in Little Leading Creek
 Watershed to annual erosion of possibly
 423,000+ tons for 15-40 years

Study Objectives

- Characterize Sediment Within Stream Bed
- Measure Sediment Load and Transport Rate
- Identify Sediment Sources
- Propose Restoration Alternatives

Estimating Sediment Transport

Velocity Measurements to Estimate Discharge Continuous Stage Readings

Bed Load and Suspended Load Measurements

Peterson Study Segment Velocity Measurements

Velocity Profile Plot of Cross Section

Velocity Measurements recorded using an Electromagnetic Flow Meter

Discharge Rating Curve

- stage discharge measurements over range of inbank flows
- two distinct curves
- transition at 29.1 cfs represents shift from section control to channel control
- sediment only transported out of section during higher flow events

Bedload Transport Observations

- after high flow events, pools and riffles evident
 - floods scour sand out of channel
- during low flows, bedload transport still high as sand is redistributed
 - between storm events pools fill with sand

Suspended Sediment Collection

Non-wadable Flows

US DH-59

Depth Integrated

Number USDH-48

٠

•

Wadable Flows

Hand Held Sampler Model

Suspended Sediment Rating Curve

Bed Load Collection

Helley Smith Hand Held Sampler Model No. 8015

Sieved Bedload

	% Finer Than	Particle Size
D	16	0.36
D!	50	0.50
D	34	1.80

poorly graded coarse sand

Bedload Transport Rates

- higher bedload observed than suspended sediment
- at higher flows suspended sediment may exceed bedload
- estimated section transport
 - SS = 10 ton/yr
 - BL = 18 ton/yr
- estimated channel transport
 - SS = 7 ton/yr
 - BL = 8 ton/yr

Assessment of AML Reclamation

- headwater and tributary creeks had well graded sediments including gravel and large stones
- often pavement apparent
- sites vegetated and no obvious erosion problems
- where is all this sand coming from?

Evaluating Bank Erosion

Method: Repeat Survey

Multiple Cross-sections and Longitudinal Profiles

Study Segments

Main Stem Study Segments

.05

Rail Road Bridge Rutland Bridge Peterson Bridge Soil and Water Priddy Bridge Adkins

- 1.9 River Mi 3.1 River Mi 4.6 River Mi
- 7.0 River Mi

8.2 River Mi

Tributary Study Segments

		-
Cremean	3.6	River M
Side Road	6.65	River M
Harrisonville	9.3	River M

Subtle Channel Changes

Peterson Cross-section

Dimension	Change %			
Binichilion	Yr 1	Yr 2	Cumulative	
Area (Ft ²)	3.2	0.8	4.0	
Width (Ft)	4.2	1.0	5.3	
Dmean (Ft)	0.0	0.0	0.0	
Dmax (Ft)	1.4	4.1	5.5	

Bank Erosion Common on Mainstem

- deeply entrenched channel
- poorly vegetated and easily erodable banks
- in many locations cattle have access to creek
- bank erosion likely primary sediment source

Sediment Origin

- borings to reveal depths of sediment in floodplain
- presence of large amounts of coal and orange staining may be good indicators for mining related erosion

Soil Borings

- sets of soil borings were drilled at two creek cross-sections
- continuous split spoon sampling 4-14'
- cores collected in plastic sleeves for extraction and analysis in lab

Soil Boring Locations

Typical Cores

- mostly poorly graded sand with between clay layers
- coal chips and fines spread through soil
- some layers with lots of coal
- significant

 orange staining
 often adjacent
 to heavy coal
 layer

Deeper Cores

- at 6-10 feet most soils turned from tan or brown to grey or black
- occasionally at depth several inches of carbonized, recently deposited leaves, sticks, logs, and grass present

Coal?

- coal chips difficult to distinguish from other black deposits (particularly when wet)
- need to closely inspect each fragment
- coal fines need to be identified with a microscope

Harrisonville Stratigraphy

- sand and clay found up to 14 ft deep and over 200 ft from channel
- old river
 beds found
 over 100
 feet from
 channel

Coal in Harrisonville Cores

- coal chips and fines found throughout
- valley

 inundated
 with
 sediment
 from the
 strip mining
 over 14
 feet deep

Peterson Stratigraphy

- sand and clay found up to 10 ft deep and over 100 ft from channel
- old river
 beds and
 thick layers
 of recently
 deposited
 organic
 matter found

Coal in Peterson Cores

- coal found as deep as 12 feet
- no coal found in or below wetland sediments
- possibly original floodplain before inundated with sand

Likely History of Little Leading Creek

- during and after strip mining very large sediment loads inundated the watershed forming valley plugs
- during this period Little Leading Creek resembled a braided stream that filled the hollows and valleys with sand and clay
- after AML reclamation, the sediment source was removed and the channel began to cut downward through the easily erodable material
- the result is deeply entrenched banks with persistant sediment source to the creek from the valley and floodplain deposits
- low gradient areas act as sediment traps, locking sediments in the system except during high flow

Conclusions

- large quantities of sand transported within the system primarily as bedload
- uniform sand the dominant deposit
- sand trapped in channel, only leaves the system during high flow events
- major source of sediment currently from bank erosion
- floodplain deposits highly erodable and a direct result of strip mining

Restoration Recommendations

1. Bank Stabilization

- limit primary sediment source to the creek
- stabilize 2.75 miles of the most degradable stream banks
 - reconnect channel to floodplain
 - raparian revegitation
 - proper channel design
- coexist with cattle
 - exclusion from channel
 - drill wells to provide alternate water source
 - established crossings

Failing Banks	River Mile	Total
Howard/Clark Property	9.1 through 9.4	0.3
Jewell Property	7.8 through 8.4	0.6
Johnson/Priddy Property	6.9 through 7.0	0.1
Wm Sterns Property	6.3 through 6.9	0.6
Fort Meigs	5.3 through 5.5	0.2
Soil and Water Property	4.8 through 4.95	0.15
Soil and Water Property	4.55 through 4.65	0.1
Colman Property	4.1 through 4.4	0.3
Barrett Property	3.6 through 3.7	0.1
Peterson Property	3.1 through 3.2	0.1
Casto Property	2.5through 2.6	0.1
Rutland BaseBall Fields	1.65 through 1.75	0.1
Total		2.75

Restoration Recommendations

2. Sediment Trap

- remove existing sediment from channel
- during bankfull or greater flow collect transported sand in a pair of ponds
- will require periodic sand removal
- 3. Habitat Improvement Structures
 - install downstream of sediment trap
 - generate enough velocity to maintair pools
 - log vanes, vortex weirs, ...

funded by

Ohio Department of Natural Resources, Division of Mineral Resources Management

and

Meigs County Soil and Water Conservation District

www.ohio.edu/engineering

